

ProLight PBVH-7FWE-F2GR1
7W Power LED
Technical Datasheet
Version: P1.1

ProLight Opto ProEngine Series

Features

- · High flux density of lighting source
- · Good color uniformity
- · RoHS compliant
- More energy efficient than incandescent and most halogen lamps
- · Long lifetime
- · AEC-Q102 Qualified
- · SAE/ECE Compliant

Main Applications

- · Bicycle Lamps
- **Exterior Automotive Lighting**
- · Floodlight
- · Bending Light
- Daytime Running Light

Introduction

• The input power is 7 Watt, the multi-chip ultra high power ProEngine Serie delivers never before seen luminous flux output from a single emitter. The superficial illuminating nature of ProEngine makes them the preference bicycle lamps, typical applications include exterior automotive lighting Bending and Daytime Running Light.

Emitter Mechanical Dimensions

- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are \pm 0.1mm.
- 4. Please do not solder the emitter by manual hand soldering, otherwise it will damage the emitter.
- Please do not use a force of over 1kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

^{*}The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics, $T_j = 25^{\circ}C$

Radiation		Dort Number		Luminous F	minous Flux Φ _ν (lm)	
	Color	Part Number	@10	00mA	Refer @	1200mA
Pattern		Emitter	Min.	Тур.	Min.	Тур.
Flat	White	PBVH-7FWE-F2GR1	700	800	805	910

- ProLight maintains a tolerance of ± 7% on flux and power measurements.
- Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics, T₁ = 25°C

		Forward Voltage V _F (V)				
		@1000m	A	Refer @1200mA	Thermal Resist	tance
Color	Min.	Тур.	Max.	Тур.	Junction to Slug	(°C/W)
White	5.9	6.5	7.4	6.6	3.4	

ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Optical Characteristics at 1000mA, T_j = 25°C

					Total included Angle	Viewing Angle
Radiation Pattern	Color	Color Min.	Temperature Typ.	CCT Max.	(degrees) $\theta_{0.90V}$	(degrees) 2 θ _{1/2}
Flat	White	5380 K 5620 K	5620 K 5880 K	5860 K 6140 K	160 160	120 120
		5870 K 6140 K	6150 K 6450 K	6430 K 6760 K	160 160	120 120

[•] ProLight maintains a tolerance of ± 5% for CCT measurements.

Absolute Maximum Ratings

Parameter	White
Max DC Forward Current (mA)	1500
Peak Pulsed Forward Current (mA)	1500 (less than 1/10 duty cycle@1KHz)
LED Junction Temperature	150°C
Junction Temperature for short time applications*	175°C
Operating Board Temperature at Maximum DC Forward Current	-40°C - 125°C
Storage Temperature	-40°C - 125°C
Soldering Temperature	JEDEC 020c 260°C
Allowable Reflow Cycles	3
Reverse Voltage	Not designed to be driven in reverse bias
ESD withstand voltage(kV) (acc. to IEC 61000-4-2-air discharge)	up to 8

Note: * The LED chip exhibits excellent performance but slight package discoloration occurs at highest temperatures. Exemplary median lifetime for T_J = 175°C is 100h.

Photometric Luminous Flux Bin Structure

Color	Bin Code	Min <mark>i</mark> mum Photometric Flux (Im)	Maximum Photometric Flux (Im)	Available Color Bins
White	D2 D3 D4 D5 D6 D7 D8 D9	700 730 760 790 825 860 900 940	730 760 790 825 860 900 940 980	All [1] [1] [1] [1] [1] [1] [1] [1] [1]

- ProLight maintains a tolerance of ± 7% on flux and power measurements.
- The flux bin of the product may be modified for improvement without notice.
- [1] The rest of color bins are not 100% ready for order currently. Please ask for quote and order Possibility.

Color Bin

White Binning Structure Graphical Representation

White Bin Structure

Bin Code	х	у	Typ. CCT (K)	Bin Code	х	У	Typ. CCT (K)
	0.3241	0.3454			0.3145	0.3250	
W1	0.3248	0.3290	5620	W3	0.3163	0.3101	6150
VVI	0.3350	0.3380	3020	VVS	0.3253	0.3186	0130
	0.3355	0.3553			0.3246	0.3344	
	0.3190	0.3350			0.3104	0.3154	
W2	0.3203	0.3184	5880	W4	0.3127	0.3013	6450
V V Z	0.3299	0.3281	3000	V V -1	0.3212	0.3095	0430
	0.3298	0.3446			0.3199	0.3245	

• Tolerance on each color bin (x , y) is ± 0.005

Color Spectrum, $T_J = 25^{\circ}C$

1. White

Junction Temperature Relative Characteristics

Fig 1. Junction Temperature vs.

Relative Luminous Flux at 1000mA.

Fig 2. Junction Temperature vs. Forward Voltage at 1000mA.

Fig 3. Junction Temperature vs. Chromaticity Coordinate Δx at 1000mA.

Fig 4. Junction Temperature vs. Chromaticity Coordinate Δy at 1000mA.

Forward Current Relative Characteristics

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0 400 800 1200 1600
Forward Current (mA)

Fig 5. Forward Voltage vs. Forward Current at T_{.1}=25°C.

Fig 6. Forward Current vs.

Relative Luminous Flux at T₁=25°C.

Fig 7. Forward Current vs. Chromaticity Coordinate Δx at $T_J=25^{\circ}C$.

Fig 8. Forward Current vs. Chromaticity Coordinate Δy at T_J =25°C.

Board Temperature vs. Maximum Forward Current

Maximum Forward Current

Typical Representative Spatial Radiation Pattern

Moisture Sensitivity Level – JEDEC Level 1

			Soak Requirements			
Level	Floo	Floor Life		Standard		Environment
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA

- The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.
- Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C.

			Soak Requirements			
Level	Level Floor Life		Standard		Accelerated Environment	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA
2	1 year	≤30°C / 60% RH	168 +5/-0	85°C / 60% RH	NA	NA
2a	4 weeks	≤30°C / 60% RH	696 +5/-0	30°C / 60% RH	120 +1/-0	60°C / 60% RH
3	168 hours	≤30°C / 60% RH	192 +5/-0	30°C / 60% RH	40 +1/-0	60°C / 60% RH
4	72 hours	≤30°C / 60% RH	96 +2/-0	30°C / 60% RH	20 +0.5/-0	60°C / 60% RH
5	48 hours	≤30°C / 60% RH	72 +2/-0	30°C / 60% RH	15 +0.5/-0	60°C / 60% RH
5a	24 hours	≤30°C / 60% RH	48 +2/-0	30°C / 60% RH	10 +0.5/-0	60°C / 60% RH
6	Time on Label (TOL)	≤30°C / 60% RH	Time on Label (TOL)	30°C / 60% RH	NA	NA

Reliability testing in accordance with AEC-Q102

The development of this product included extensive operational life-time testing and environmental testing. Table 1 summarizes the tests applied and cumulative test results obtained from testing performed in accordance with AEC-Q102.

Table 1. Operating life, mechanical and environmental tests performed on it's package in accordance with AEC-Q102.

Abrb Stress	Conditions	Duration	Failure Criteria	Rejects
TEST Pre- and Post-Stress Electrical Test	T _J = 25°C	N/A	See notes [2]	0
PC Pre-conditioning	JESD22-A113 Soak Tamb = 85°C, RH = 85% Reflow soldering	168 hours 3 cycles	See notes [2]	0
EV External Visual	JESD22 B-101	N/A	See notes [2]	0
HTFB High Temperature Forward Bias	JESD22-A108 Tamb =85°C, IF = max. DC [1]	1000 hours	See notes [2]	0
TC Temperature Cycling	JESD22-A104 -30°C to 80°C	1000 cycles	See notes [2]	0
HTHHB High temp. & High Humidity Bias	JESD22-A101 Tamb = 85°C, RH = 85%, IF = max. DC [1]	1000 hours	See notes [2]	0
PTC Power and Temperature cycle	-30°C to 85°C, 10 minutes dwell, 20 minutes transfer (1 hour cycle), 2 minutes ON/2 minutes OFF, IF = max. DC [1]	1000 hours	See notes [2]	0
ESD	AEC Q101-001	8000V	See notes [2]	0
VVF Vibration Variable Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis	Hille	See notes [3]	0
MS Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis		See notes [3]	0
RSH Resistance to Solder Heat	JESD22-A111 / JESD22-B106 260 °C ± 5 °C	10 s	See notes [3]	0
SD Solderability	J-STD-002 245 °C ± 5 °C	3 s	See notes [3]	0

Notes:

1. Depending on the maximum derating curve.

2. Criteria for judging failure

Toot Condition	Criteria for Ju	Criteria for Judgement		
Test Condition	Min.			
$I_F = max DC$		Initial Level x 1.1		
I _F = max DC	Initial Level x 0.8			
,				
$V_R = 5V$		50 µA		
	I _F = max DC	$I_{F} = \max DC$ $I_{F} = \max DC$ $I_{F} = \max DC$ Initial Level x 0.8		

^{*} The test is performed after the LED is cooled down to the room temperature.

3. A failure is an LED that is open or shorted.

Recommended Solder Pad Design

Standard Emitter

All dimensions are in millimeters.

Recommended MCPCB Design

- Copper(Cu) substrate is recommended.
- The thermal conductivity of dielectric layer in the Aluminum(Al) substrate is greater or equal than 6w/mk.
- If the thermal conductivity of dielectric layer equal to 2w/mk, the power consumption should be lower than 20w.

Recommended Suction Nozzle Design

- 1. All dimensions are in millimeters and tolerances are \pm 0.05mm.
- 2. Recommended the material of suction nozzle was PEEK.
- 3. The actual suction nozzle like below picture.

DRAFT - For reference only. Subject to change without notice.

Reflow Soldering Condition

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly	
Average Ramp-Up Rate	3°C / second max.	3°C / second max.	
$(T_{Smax} \text{ to } T_{P})$	5 C / Second max.	5 C/ Second max.	
Preheat			
Temperature Min (T_{Smin})	100°C	150°C	
– Temperature Max (T _{Smax})	150°C	200°C	
– Time (t _{Smin} to t _{Smax})	60-120 seconds	60-180 seconds	
Time maintained above:			
– Temperature (T _L)	183°C	217°C	
– Time (t _L)	60-150 seconds	60-150 seconds	
Peak/Classification Temperature (T _p)	240°C	260°C	
Time Within 5°C of Actual Peak	10-30 seconds	30 40 seconds	
Temperature (t _P)	10-30 Seconds	20-40 seconds	
Ramp-Down Rate	6°C/second max.	6°C/second max.	
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.	

- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind
 of solder pastes may cause a reliability problem to LED.
- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a
 double-head soldering iron should be used. It should be confirmed beforehand whether the
 characteristics of the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Reel Packaging

- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are \pm 0.1mm.

Emitter Reel Packaging

- 1. Empty component pockets sealed with top cover tape.
- 2. 250 or 500 pieces per reel.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.

Precaution for Use

- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/

Handling of Lens LEDs

Notes for handling of lens LEDs

- Please do not use a force of over 1kgf impact or pressure on the lens, otherwise it will cause a catastrophic failure.
- The LEDs should only be picked up by making contact with the sides of the LED body.
- Avoid touching the lens especially by sharp tools such as Tweezers.
- Avoid leaving fingerprints on the lens.
- Please store the LEDs away from dusty areas or seal the product against dust.
- Please do not mold over the lens with another resin. (epoxy, urethane, etc)

