ProLight PBVH-7FWE-F2GR1 7W Power LED Technical Datasheet Version: P1.1 # ProLight Opto ProEngine Series #### **Features** - · High flux density of lighting source - · Good color uniformity - · RoHS compliant - More energy efficient than incandescent and most halogen lamps - · Long lifetime - · AEC-Q102 Qualified - · SAE/ECE Compliant #### **Main Applications** - · Bicycle Lamps - **Exterior Automotive Lighting** - · Floodlight - · Bending Light - Daytime Running Light #### Introduction • The input power is 7 Watt, the multi-chip ultra high power ProEngine Serie delivers never before seen luminous flux output from a single emitter. The superficial illuminating nature of ProEngine makes them the preference bicycle lamps, typical applications include exterior automotive lighting Bending and Daytime Running Light. #### **Emitter Mechanical Dimensions** - 1. Drawing not to scale. - 2. All dimensions are in millimeters. - 3. Unless otherwise indicated, tolerances are \pm 0.1mm. - 4. Please do not solder the emitter by manual hand soldering, otherwise it will damage the emitter. - Please do not use a force of over 1kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure. ^{*}The appearance and specifications of the product may be modified for improvement without notice. # Flux Characteristics, $T_j = 25^{\circ}C$ | Radiation | | Dort Number | | Luminous F | minous Flux Φ _ν (lm) | | |-----------|-------|-----------------|------|------------|---------------------------------|--------| | | Color | Part Number | @10 | 00mA | Refer @ | 1200mA | | Pattern | | Emitter | Min. | Тур. | Min. | Тур. | | Flat | White | PBVH-7FWE-F2GR1 | 700 | 800 | 805 | 910 | - ProLight maintains a tolerance of ± 7% on flux and power measurements. - Please do not drive at rated current more than 1 second without proper heat sink. ## Electrical Characteristics, T₁ = 25°C | | | Forward Voltage V _F (V) | | | | | |-------|------|------------------------------------|------|---------------|------------------|--------| | | | @1000m | A | Refer @1200mA | Thermal Resist | tance | | Color | Min. | Тур. | Max. | Тур. | Junction to Slug | (°C/W) | | White | 5.9 | 6.5 | 7.4 | 6.6 | 3.4 | | ProLight maintains a tolerance of ± 0.1V for Voltage measurements. ## Optical Characteristics at 1000mA, T_j = 25°C | | | | | | Total
included
Angle | Viewing
Angle | |----------------------|-------|------------------|---------------------|------------------|----------------------------|---------------------------------| | Radiation
Pattern | Color | Color
Min. | Temperature
Typ. | CCT
Max. | (degrees) $\theta_{0.90V}$ | (degrees)
2 θ _{1/2} | | Flat | White | 5380 K
5620 K | 5620 K
5880 K | 5860 K
6140 K | 160
160 | 120
120 | | | | 5870 K
6140 K | 6150 K
6450 K | 6430 K
6760 K | 160
160 | 120
120 | [•] ProLight maintains a tolerance of ± 5% for CCT measurements. ### **Absolute Maximum Ratings** | Parameter | White | |---|---| | Max DC Forward Current (mA) | 1500 | | Peak Pulsed Forward Current (mA) | 1500 (less than 1/10 duty cycle@1KHz) | | LED Junction Temperature | 150°C | | Junction Temperature for short time applications* | 175°C | | Operating Board Temperature at Maximum DC Forward Current | -40°C - 125°C | | Storage Temperature | -40°C - 125°C | | Soldering Temperature | JEDEC 020c 260°C | | Allowable Reflow Cycles | 3 | | Reverse Voltage | Not designed to be driven in reverse bias | | ESD withstand voltage(kV) (acc. to IEC 61000-4-2-air discharge) | up to 8 | Note: * The LED chip exhibits excellent performance but slight package discoloration occurs at highest temperatures. Exemplary median lifetime for T_J = 175°C is 100h. #### **Photometric Luminous Flux Bin Structure** | Color | Bin Code | Min <mark>i</mark> mum
Photometric Flux (Im) | Maximum
Photometric Flux (Im) | Available
Color Bins | |-------|--|--|--|---| | White | D2
D3
D4
D5
D6
D7
D8
D9 | 700
730
760
790
825
860
900
940 | 730
760
790
825
860
900
940
980 | All [1] [1] [1] [1] [1] [1] [1] [1] [1] | - ProLight maintains a tolerance of ± 7% on flux and power measurements. - The flux bin of the product may be modified for improvement without notice. - [1] The rest of color bins are not 100% ready for order currently. Please ask for quote and order Possibility. ### **Color Bin** **White Binning Structure Graphical Representation** White Bin Structure | Bin Code | х | у | Typ. CCT
(K) | Bin Code | х | У | Typ. CCT
(K) | |----------|--------|--------|-----------------|-------------------|--------|--------|-----------------| | | 0.3241 | 0.3454 | | | 0.3145 | 0.3250 | | | W1 | 0.3248 | 0.3290 | 5620 | W3 | 0.3163 | 0.3101 | 6150 | | VVI | 0.3350 | 0.3380 | 3020 | VVS | 0.3253 | 0.3186 | 0130 | | | 0.3355 | 0.3553 | | | 0.3246 | 0.3344 | | | | 0.3190 | 0.3350 | | | 0.3104 | 0.3154 | | | W2 | 0.3203 | 0.3184 | 5880 | W4 | 0.3127 | 0.3013 | 6450 | | V V Z | 0.3299 | 0.3281 | 3000 | V V -1 | 0.3212 | 0.3095 | 0430 | | | 0.3298 | 0.3446 | | | 0.3199 | 0.3245 | | • Tolerance on each color bin (x , y) is ± 0.005 # Color Spectrum, $T_J = 25^{\circ}C$ 1. White #### **Junction Temperature Relative Characteristics** Fig 1. Junction Temperature vs. Relative Luminous Flux at 1000mA. Fig 2. Junction Temperature vs. Forward Voltage at 1000mA. Fig 3. Junction Temperature vs. Chromaticity Coordinate Δx at 1000mA. Fig 4. Junction Temperature vs. Chromaticity Coordinate Δy at 1000mA. #### **Forward Current Relative Characteristics** 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 400 800 1200 1600 Forward Current (mA) Fig 5. Forward Voltage vs. Forward Current at T_{.1}=25°C. Fig 6. Forward Current vs. Relative Luminous Flux at T₁=25°C. Fig 7. Forward Current vs. Chromaticity Coordinate Δx at $T_J=25^{\circ}C$. Fig 8. Forward Current vs. Chromaticity Coordinate Δy at T_J =25°C. #### **Board Temperature vs. Maximum Forward Current** **Maximum Forward Current** ### **Typical Representative Spatial Radiation Pattern** ### **Moisture Sensitivity Level – JEDEC Level 1** | | | | Soak Requirements | | | | |-------|-----------|-------------------|-------------------|------------------|--------------|-------------| | Level | Floo | Floor Life | | Standard | | Environment | | | Time | Conditions | Time (hours) | Conditions | Time (hours) | Conditions | | 1 | Unlimited | ≤30°C /
85% RH | 168 +5/-0 | 85°C /
85% RH | NA | NA | - The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility. - Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C. | | | | Soak Requirements | | | | |-------|------------------------|-------------------|------------------------|------------------|-------------------------|------------------| | Level | Level Floor Life | | Standard | | Accelerated Environment | | | | Time | Conditions | Time (hours) | Conditions | Time (hours) | Conditions | | 1 | Unlimited | ≤30°C /
85% RH | 168 +5/-0 | 85°C /
85% RH | NA | NA | | 2 | 1 year | ≤30°C /
60% RH | 168 +5/-0 | 85°C /
60% RH | NA | NA | | 2a | 4 weeks | ≤30°C /
60% RH | 696 +5/-0 | 30°C /
60% RH | 120 +1/-0 | 60°C /
60% RH | | 3 | 168 hours | ≤30°C /
60% RH | 192 +5/-0 | 30°C /
60% RH | 40 +1/-0 | 60°C /
60% RH | | 4 | 72 hours | ≤30°C /
60% RH | 96 +2/-0 | 30°C /
60% RH | 20 +0.5/-0 | 60°C /
60% RH | | 5 | 48 hours | ≤30°C /
60% RH | 72 +2/-0 | 30°C /
60% RH | 15 +0.5/-0 | 60°C /
60% RH | | 5a | 24 hours | ≤30°C /
60% RH | 48 +2/-0 | 30°C /
60% RH | 10 +0.5/-0 | 60°C /
60% RH | | 6 | Time on Label
(TOL) | ≤30°C /
60% RH | Time on Label
(TOL) | 30°C /
60% RH | NA | NA | #### Reliability testing in accordance with AEC-Q102 The development of this product included extensive operational life-time testing and environmental testing. Table 1 summarizes the tests applied and cumulative test results obtained from testing performed in accordance with AEC-Q102. Table 1. Operating life, mechanical and environmental tests performed on it's package in accordance with AEC-Q102. | Abrb
Stress | Conditions | Duration | Failure
Criteria | Rejects | |---|--|-----------------------|---------------------|---------| | TEST Pre- and Post-Stress Electrical Test | T _J = 25°C | N/A | See notes [2] | 0 | | PC
Pre-conditioning | JESD22-A113
Soak Tamb = 85°C, RH = 85%
Reflow soldering | 168 hours
3 cycles | See notes [2] | 0 | | EV
External Visual | JESD22 B-101 | N/A | See notes [2] | 0 | | HTFB High Temperature Forward Bias | JESD22-A108
Tamb =85°C, IF = max. DC [1] | 1000 hours | See notes [2] | 0 | | TC Temperature Cycling | JESD22-A104
-30°C to 80°C | 1000 cycles | See notes [2] | 0 | | HTHHB High temp. & High Humidity Bias | JESD22-A101
Tamb = 85°C, RH = 85%, IF = max. DC [1] | 1000 hours | See notes [2] | 0 | | PTC Power and Temperature cycle | -30°C to 85°C, 10 minutes dwell,
20 minutes transfer (1 hour cycle),
2 minutes ON/2 minutes OFF,
IF = max. DC [1] | 1000 hours | See notes [2] | 0 | | ESD | AEC Q101-001 | 8000V | See notes [2] | 0 | | VVF Vibration Variable Frequency | 10-2000-10 Hz, log or linear sweep rate,
20 G about 1 min., 1.5 mm, 3X/axis | Hille | See notes [3] | 0 | | MS
Mechanical Shock | 1500 G, 0.5 msec. pulse,
5 shocks each 6 axis | | See notes [3] | 0 | | RSH
Resistance to Solder
Heat | JESD22-A111 / JESD22-B106
260 °C ± 5 °C | 10 s | See notes [3] | 0 | | SD
Solderability | J-STD-002
245 °C ± 5 °C | 3 s | See notes [3] | 0 | #### Notes: 1. Depending on the maximum derating curve. 2. Criteria for judging failure | Toot Condition | Criteria for Ju | Criteria for Judgement | | | |-------------------------|-------------------------|---|--|--| | Test Condition | Min. | | | | | $I_F = max DC$ | | Initial Level x 1.1 | | | | I _F = max DC | Initial Level x 0.8 | | | | | , | | | | | | $V_R = 5V$ | | 50 µA | | | | | I _F = max DC | $I_{F} = \max DC$ $I_{F} = \max DC$ $I_{F} = \max DC$ Initial Level x 0.8 | | | ^{*} The test is performed after the LED is cooled down to the room temperature. 3. A failure is an LED that is open or shorted. ### **Recommended Solder Pad Design** **Standard Emitter** All dimensions are in millimeters. # **Recommended MCPCB Design** - Copper(Cu) substrate is recommended. - The thermal conductivity of dielectric layer in the Aluminum(Al) substrate is greater or equal than 6w/mk. - If the thermal conductivity of dielectric layer equal to 2w/mk, the power consumption should be lower than 20w. ### **Recommended Suction Nozzle Design** - 1. All dimensions are in millimeters and tolerances are \pm 0.05mm. - 2. Recommended the material of suction nozzle was PEEK. - 3. The actual suction nozzle like below picture. DRAFT - For reference only. Subject to change without notice. #### **Reflow Soldering Condition** | Profile Feature | Sn-Pb Eutectic Assembly | Pb-Free Assembly | | |--|-------------------------|-------------------|--| | Average Ramp-Up Rate | 3°C / second max. | 3°C / second max. | | | $(T_{Smax} \text{ to } T_{P})$ | 5 C / Second max. | 5 C/ Second max. | | | Preheat | | | | | Temperature Min (T_{Smin}) | 100°C | 150°C | | | – Temperature Max (T _{Smax}) | 150°C | 200°C | | | – Time (t _{Smin} to t _{Smax}) | 60-120 seconds | 60-180 seconds | | | Time maintained above: | | | | | – Temperature (T _L) | 183°C | 217°C | | | – Time (t _L) | 60-150 seconds | 60-150 seconds | | | Peak/Classification Temperature (T _p) | 240°C | 260°C | | | Time Within 5°C of Actual Peak | 10-30 seconds | 30 40 seconds | | | Temperature (t _P) | 10-30 Seconds | 20-40 seconds | | | Ramp-Down Rate | 6°C/second max. | 6°C/second max. | | | Time 25°C to Peak Temperature | 6 minutes max. | 8 minutes max. | | - We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering. - Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED. - All temperatures refer to topside of the package, measured on the package body surface. - Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing. - Reflow soldering should not be done more than three times. - When soldering, do not put stress on the LEDs during heating. - After soldering, do not warp the circuit board. ### **Emitter Reel Packaging** - 1. Drawing not to scale. - 2. All dimensions are in millimeters. - 3. Unless otherwise indicated, tolerances are \pm 0.1mm. # **Emitter Reel Packaging** - 1. Empty component pockets sealed with top cover tape. - 2. 250 or 500 pieces per reel. - 3. Drawing not to scale. - 4. All dimensions are in millimeters. #### **Precaution for Use** - We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering. - Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED. - Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering. - Please avoid rapid cooling after soldering. - Components should not be mounted on warped direction of PCB. - Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing. - This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used. - When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature. - The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/ #### **Handling of Lens LEDs** Notes for handling of lens LEDs - Please do not use a force of over 1kgf impact or pressure on the lens, otherwise it will cause a catastrophic failure. - The LEDs should only be picked up by making contact with the sides of the LED body. - Avoid touching the lens especially by sharp tools such as Tweezers. - Avoid leaving fingerprints on the lens. - Please store the LEDs away from dusty areas or seal the product against dust. - Please do not mold over the lens with another resin. (epoxy, urethane, etc)